blue271828's misc :-)

共分散

共分散とは

共分散 (英:covariance) とは、二種類のデータの関係を示す指標のこと。共分散は、それぞれの偏差の積の期待値により計算される。

cov(X,Y)=E((XE(X))(YE(Y)))={xy(xμX)(yμY)P(x,y)if discrete(xμX)(yμY)p(x,y) dxdyif continuous \begin{aligned} \mathrm{cov}(X,Y) &= E((X-E(X))(Y-E(Y))) \\ &= \begin{cases} \displaystyle\sum_x\sum_y (x-\mu_X)(y-\mu_Y)P(x,y) & \text{if discrete} \\ \displaystyle\iint(x-\mu_X)(y-\mu_Y)p(x,y)~dxdy & \text{if continuous} \\ \end{cases} \end{aligned}

XE(X)X-E(X)YE(Y)Y-E(Y) の正負の傾向から、次式の符号の関係を持つ。

cov(X,Y) {>0X,Y の符号が同傾向<0X,Y の符号が反対傾向=0X,Y は無相関 \mathrm{cov}(X,Y)~\begin{cases} \gt 0 & \cdots X,Y\text{ の符号が同傾向} \\ \lt 0 & \cdots X,Y\text{ の符号が反対傾向} \\ = 0 & \cdots X,Y\text{ は無相関} \\ \end{cases}

共分散の諸定理

(C1):V(X+Y)=V(X)+V(Y)+2cov(X,Y)(C2):cov(X,Y)=E(XY)E(X)E(Y) \begin{aligned} \text{(C1)} &: V(X+Y) = V(X)+V(Y)+2\mathrm{cov}(X,Y) \\ \text{(C2)} &: \mathrm{cov}(X,Y) = E(XY) - E(X)E(Y) \\ \end{aligned}

(C1)\bold{(C1)} の証明:

V(X)+V(Y)+2cov(X,Y)=E((XE(X))2)+E((YE(Y))2)+2E((XE(X))(YE(Y)))=E((XE(X))2+(YE(Y))2+2(XE(X))(YE(Y)))=E(((XE(X))+(YE(Y)))2)=E(((X+Y)E(X+Y))2)=V(X+Y)V(X+Y)=V(X)+V(Y)+2cov(X,Y) \begin{aligned} V(X)+V(Y)+2\mathrm{cov}(X,Y) &= E((X-E(X))^2) + E((Y-E(Y))^2) + 2E((X-E(X))(Y-E(Y))) \\ &= E((X-E(X))^2+(Y-E(Y))^2+2(X-E(X))(Y-E(Y))) \\ &= E(((X-E(X))+(Y-E(Y)))^2) \\ &= E(((X+Y)-E(X+Y))^2) \\ &= V(X+Y) \\ \\ \therefore V(X+Y) &= V(X)+V(Y)+2\mathrm{cov}(X,Y) \end{aligned}

(C2)\bold{(C2)} の証明:

cov(X,Y)=E((XE(X))(YE(Y))=E(XYXE(Y)YE(X)+E(X)E(Y))=E(XY)E(X)E(Y)E(X)E(Y)+E(X)E(Y)=E(XY)E(X)E(Y)cov(X,Y)=E(XY)E(X)E(Y) \begin{aligned} \operatorname{cov}(X,Y) &= E((X-E(X))(Y-E(Y)) \\ &= E(XY - XE(Y) - YE(X) + E(X)E(Y)) \\ &= E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y) \\ &= E(XY) - E(X)E(Y) \\ \\ \therefore \operatorname{cov}(X,Y) &= E(XY) - E(X)E(Y) \end{aligned}

関連記事

参考文献

統計学入門 (基礎統計学Ⅰ)

東京大学出版会
売り上げランキング: 3,194

Tags

#Ansible (3) #Bash (1) #Docker (1) #Git (2) #Hugo (2) #Molecule (1) #Python (1) #WSLtty (1) #アルゴリズム (4) #ビジネス用語 (1) #プログラミング (1) #位相空間論 (8) #初等数学 (20) #初等関数 (1) #実解析 (1) #幾何学 (3) #微分積分学 (18) #情報理論 (4) #抽象代数学 (14) #数理モデル (2) #数理論理学 (21) #機械学習 (3) #正規表現 (1) #測度論 (3) #特殊関数 (4) #確率論 (18) #組合せ論 (5) #統計学 (12) #線型代数学 (18) #複素解析学 (4) #解析学 (15) #論理学 (6) #順序集合論 (9)