blue271828's misc :-)

行列式

行列式

行列式 (英:determinant) とは、正方行列に対して定義される量であり、nn-次正方行列 An×nA^{n\times n} の行列式は次式で定義される。ここで SnS_n は対称群、σ\sigma は置換、sgn(σ)\mathrm{sgn}(\sigma) は置換符号である。

det(A)=σSnsgn(σ)i=1nAiσ(i) \det(A) = \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)\prod_{i=1}^n A_{i\sigma(i)}


二次の行列式:

A=[a11a12a21a22]det(A)=σS2sgn(σ)i=12Aiσ(i)=sgn(σ1)i=12Aiσ1(i)+sgn(σ2)i=12Aiσ2(i)σ1=(1212)σ2=(1221)det(A)=i=12Aiσ1(i)i=12Aiσ2(i)=a11a22a12a21 \begin{aligned} A &= \begin{bmatrix} a_{11} & a_{12} \cr a_{21} & a_{22} \cr \end{bmatrix} \cr \cr \det(A) &= \sum_{\sigma\in S_2}\mathrm{sgn}(\sigma)\prod_{i=1}^2 A_{i\sigma(i)} \cr &= \mathrm{sgn}(\sigma_1)\prod_{i=1}^2 A_{i\sigma_1(i)} + \mathrm{sgn}(\sigma_2)\prod_{i=1}^2 A_{i\sigma_2(i)} \cr \cr \sigma_1 &= \begin{pmatrix} 1 & 2 \cr 1 & 2 \cr \end{pmatrix} \cr \sigma_2 &= \begin{pmatrix} 1 & 2 \cr 2 & 1 \cr \end{pmatrix} \cr \cr \det(A) &= \prod_{i=1}^2 A_{i\sigma_1(i)} - \prod_{i=1}^2 A_{i\sigma_2(i)} \cr &= a_{11}a_{22} - a_{12}a_{21} \end{aligned}


三次の行列式:

A=[a11a12a13a21a22a23a31a32a33]det(A)=σS3sgn(σ)i=13Aiσ(i)=sgn(σ1)i=13Aiσ1(i)+sgn(σ2)i=13Aiσ2(i)+sgn(σ3)i=13Aiσ3(i)+sgn(σ4)i=13Aiσ4(i)+sgn(σ5)i=13Aiσ5(i)+sgn(σ6)i=13Aiσ6(i)σ1=(123123)σ2=(123132)σ3=(123213)σ4=(123231)σ5=(123312)σ6=(123321)det(A)=σS3sgn(σ)i=13Aiσ(i)=i=13Aiσ1(i)i=13Aiσ2(i)i=13Aiσ3(i)+i=13Aiσ4(i)+i=13Aiσ5(i)i=13Aiσ6(i)=a11a22a33a11a23a32a12a21a33+a12a23a31+a13a21a32a13a22a31 \begin{aligned} A &= \begin{bmatrix} a_{11} & a_{12} & a_{13} \cr a_{21} & a_{22} & a_{23} \cr a_{31} & a_{32} & a_{33} \cr \end{bmatrix} \cr \cr \det(A) &= \sum_{\sigma\in S_3}\mathrm{sgn}(\sigma)\prod_{i=1}^3 A_{i\sigma(i)} \cr &= \mathrm{sgn}(\sigma_1)\prod_{i=1}^3 A_{i\sigma_1(i)} + \mathrm{sgn}(\sigma_2)\prod_{i=1}^3 A_{i\sigma_2(i)} + \mathrm{sgn}(\sigma_3)\prod_{i=1}^3 A_{i\sigma_3(i)} \cr &\quad + \mathrm{sgn}(\sigma_4)\prod_{i=1}^3 A_{i\sigma_4(i)} + \mathrm{sgn}(\sigma_5)\prod_{i=1}^3 A_{i\sigma_5(i)} + \mathrm{sgn}(\sigma_6)\prod_{i=1}^3 A_{i\sigma_6(i)} \cr \cr \sigma_1 &= \begin{pmatrix} 1 & 2 & 3 \cr 1 & 2 & 3 \cr \end{pmatrix} \cr \sigma_2 &= \begin{pmatrix} 1 & 2 & 3 \cr 1 & 3 & 2 \cr \end{pmatrix} \cr \sigma_3 &= \begin{pmatrix} 1 & 2 & 3 \cr 2 & 1 & 3 \cr \end{pmatrix} \cr \sigma_4 &= \begin{pmatrix} 1 & 2 & 3 \cr 2 & 3 & 1 \cr \end{pmatrix} \cr \sigma_5 &= \begin{pmatrix} 1 & 2 & 3 \cr 3 & 1 & 2 \cr \end{pmatrix} \cr \sigma_6 &= \begin{pmatrix} 1 & 2 & 3 \cr 3 & 2 & 1 \cr \end{pmatrix} \cr \cr \det(A) &= \sum_{\sigma\in S_3}\mathrm{sgn}(\sigma)\prod_{i=1}^3 A_{i\sigma(i)} \cr &= \prod_{i=1}^3 A_{i\sigma_1(i)} - \prod_{i=1}^3 A_{i\sigma_2(i)} - \prod_{i=1}^3 A_{i\sigma_3(i)} \cr &\quad + \prod_{i=1}^3 A_{i\sigma_4(i)} + \prod_{i=1}^3 A_{i\sigma_5(i)} - \prod_{i=1}^3 A_{i\sigma_6(i)} \cr &= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \cr &\quad + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} \end{aligned}

小行列式

nn-次正方行列 MM から iijj 列を取り除いた小行列の行列式を小行列式 (英:minor determinant) という。このとき小行列を MijM_{ij} で表す。

Mij=det[m11m1jm1nmi1mijminmn1mnjmnn]n×n=det[m11m1(j1)m1(j+1)m1nm(i1)1m(i1)(j1)m(i1)(j+1)m(i1)nm(i+1)1m(i+1)(j1)m(i+1)(j+1)m(i+1)nmn1mn(j1)mn(j+1)mnn](n1)×(n1) \begin{aligned} M_{ij} &= \det\overbrace{\begin{bmatrix} m_{11} & \cdots & \cancel{m_{1j}} & \cdots & m_{1n} \cr \vdots & \ddots & \vdots & & \vdots \cr \cancel{m_{i1}} & \cdots & \cancel{m_{ij}} & \cdots & \cancel{m_{in}}\cr \vdots & & \vdots & \ddots & \vdots \cr m_{n1} & \cdots & \cancel{m_{nj}} & \cdots & m_{nn} \end{bmatrix}}^{n\times n} \cr &= \det\overbrace{\begin{bmatrix} m_{11} & \cdots & m_{1(j-1)} & m_{1(j+1)} & \cdots & m_{1n} \cr \vdots & \ddots & \vdots & \vdots & & \vdots \cr m_{(i-1)1} & \cdots & m_{(i-1)(j-1)} & m_{(i-1)(j+1)} & \cdots & m_{(i-1)n} \cr m_{(i+1)1} & \cdots & m_{(i+1)(j-1)} & m_{(i+1)(j+1)} & \cdots & m_{(i+1)n} \cr \vdots & & \vdots & \vdots & \ddots & \vdots \cr m_{n1} & \cdots & m_{n(j-1)} & m_{n(j+1)} & \cdots & m_{nn} \cr \end{bmatrix}}^{(n-1)\times(n-1)} \end{aligned}

行列式の諸定理

(D1):det(A(ij))=det(A)(D2):ai=ajdet(A)=0(A=[a1  an])(D3):det([a1  bi  an])+det([a1  ci  an])=det([a1  bi+ci  an])(D4):det([a1  cai  an])=cdet(A) \def\b{\boldsymbol} \begin{aligned} \text{(D1)} &: \det(A^{(i\updownarrow j)}) = -\det(A) \cr \text{(D2)} &: \b{a}_i=\b{a}_j\rArr\det(A) = 0 \quad (A=\lbrack \b{a}_1 ~\cdots ~\b{a}_n\rbrack^\top) \cr \text{(D3)} &: \det(\lbrack\b{a}_1 ~\cdots ~\b{b}_i ~\cdots ~\b{a}_n\rbrack^\top) + \det(\lbrack\b{a}_1 ~\cdots ~\b{c}_i ~\cdots ~\b{a}_n\rbrack^\top) = \det(\lbrack\b{a}_1 ~\cdots ~\b{b}_i+\b{c}_i ~\cdots ~\b{a}_n\rbrack^\top) \cr \text{(D4)} &: \det(\lbrack\b{a}_1 ~\cdots ~c\b{a}_i ~\cdots ~\b{a}_n\rbrack^\top) = c\det(A) \cr \end{aligned}


(D1)\bold{(D1)} の証明:

det(A(ij))=σSnsgn(σ)(A1σ(1)(ij)Aiσ(i)(ij)Ajσ(j)(ij)Anσ(n)(ij))=σSnsgn(σ)(A1σ(1)Ajσ(i)Aiσ(j)Anσ(n)) \begin{aligned} \det(A^{(i\updownarrow j)}) &= \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)\big(A^{(i\updownarrow j)}_{1\sigma(1)}\cdots A^{(i\updownarrow j)}_{i\sigma(i)}\cdots A^{(i\updownarrow j)}_{j\sigma(j)}\cdots A^{(i\updownarrow j)}_{n\sigma(n)}\big) \cr &= \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)\big(A_{1\sigma(1)}\cdots A_{j\sigma(i)}\cdots A_{i\sigma(j)}\cdots A_{n\sigma(n)}\big) \cr \end{aligned}

ここで i,ji,j のみを入れ替える互換 ξ\xi を定義すると、

ξ(k)={iif k=jjif k=ikotherwise(1) \begin{gathered} \xi(k) = \begin{cases} i & \text{if }k=j \cr j & \text{if }k=i \cr k & \text{otherwise} \end{cases} \end{gathered} \tag{1}

すると (1)(1) より、

σ(i)=σ(ξ(j))σ(j)=σ(ξ(i))σ(k)=σ(ξ(k))(ki,kj) \begin{aligned} \sigma(i) &= \sigma(\xi(j)) \cr \sigma(j) &= \sigma(\xi(i)) \cr \sigma(k) &= \sigma(\xi(k)) \quad (k\ne i,k\ne j) \end{aligned}

det(A(ij))=σSnsgn(σ)(A1σ(ξ(1))Ajσ(ξ(j))Aiσ(ξ(i))Anσ(ξ(n)))=σSnsgn(σ)k=1nAkσ(ξ(k)) \begin{aligned} \det(A^{(i\updownarrow j)}) &= \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)\big(A_{1\sigma(\xi(1))}\cdots A_{j\sigma(\xi(j))}\cdots A_{i\sigma(\xi(i))}\cdots A_{n\sigma(\xi(n))}\big) \cr &= \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)\prod_{k=1}^n A_{k\sigma(\xi(k))} \cr \end{aligned}

置換の符号も同様に (1)(1) から次式の関係が得られる。また互換は全単射であることから σξ\sigma\circ\xi の集合全体は SnS_n と一致する。よって、

sgn(σ)=sgn(σξ) \mathrm{sgn}(\sigma) = -\mathrm{sgn}(\sigma\circ\xi)

det(A(ij))=(σξ)Snsgn(σξ)k=1nAkσ(ξ(k))=det(A)det(A(ij))=det(A) \begin{gathered} \begin{aligned} \det(A^{(i\updownarrow j)}) &= -\sum_{(\sigma\circ\xi)\in S_n}\mathrm{sgn}(\sigma\circ\xi)\prod_{k=1}^n A_{k\sigma(\xi(k))} \cr &= -\det(A) \cr \end{aligned} \cr \cr \therefore \det(A^{(i\updownarrow j)}) = -\det(A) \end{gathered}


(D2)\bold{(D2)} の証明:

行列 AA の二つの行 ai,aj\boldsymbol a_i, \boldsymbol a_j が共に等しいことから、

A=A(ij)det(A)=det(A(ij)) \begin{aligned} A &= A^{(i\updownarrow j)} \cr \det(A) &= \det(A^{(i\updownarrow j)}) \cr \end{aligned}

定理 (D3)\text{(D3)} により、

det(A)=det(A)det(A)=0 \begin{gathered} \det(A) = -\det(A) \cr \cr \therefore\det(A) = 0 \end{gathered}


(D3)\bold{(D3)} の証明:

A=[a1aian]=[a1bi+cian]det(A)=σSnsgn(σ)i=1nAiσ(i)=σSnsgn(σ)(a1σ(1)aiσ(i)anσ(n))=σSnsgn(σ)(a1σ(1)(biσ(i)+ciσ(i))anσ(n))=σSnsgn(σ)(a1σ(1)biσ(i)anσ(n))+σSnsgn(σ)(a1σ(1)ciσ(i)anσ(n))=det[a1bian]+det[a1cian]det[a1bian]+det[a1cian]=det[a1bi+cian] \def\b{\boldsymbol} \begin{gathered} A = \begin{bmatrix}\b{a}_1\cr\vdots\cr\b{a}_i\cr\vdots\cr\b{a}_n\end{bmatrix} = \begin{bmatrix}\b{a}_1\cr\vdots\cr\b{b}_i+\b{c}_i\cr\vdots\cr\b{a}_n\end{bmatrix} \cr \cr \begin{aligned} \det(A) &= \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)\prod_{i=1}^n A_{i\sigma(i)} \cr &= \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)( a_{1\sigma(1)}\cdots a_{i\sigma(i)}\cdots a_{n\sigma(n)}) \cr &= \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)( a_{1\sigma(1)}\cdots (b_{i\sigma(i)}+c_{i\sigma(i)})\cdots a_{n\sigma(n)}) \cr &= \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)( a_{1\sigma(1)}\cdots b_{i\sigma(i)}\cdots a_{n\sigma(n)}) \cr &\quad + \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)( a_{1\sigma(1)}\cdots c_{i\sigma(i)}\cdots a_{n\sigma(n)}) \cr &= \det\begin{bmatrix}\b{a}_1\cr\vdots\cr\b{b}_i\cr\vdots\cr\b{a}_n\end{bmatrix} + \det\begin{bmatrix}\b{a}_1\cr\vdots\cr\b{c}_i\cr\vdots\cr\b{a}_n\end{bmatrix} \end{aligned} \cr \cr \therefore \det\begin{bmatrix}\b{a}_1\cr\vdots\cr\b{b}_i\cr\vdots\cr\b{a}_n\end{bmatrix} + \det\begin{bmatrix}\b{a}_1\cr\vdots\cr\b{c}_i\cr\vdots\cr\b{a}_n\end{bmatrix} = \det\begin{bmatrix}\b{a}_1\cr\vdots\cr\b{b}_i+\b{c}_i\cr\vdots\cr\b{a}_n\end{bmatrix} \end{gathered}


(D4)\bold{(D4)} の証明:

det([a1  cai  an])=σSnsgn(σ)(a1σ(1)caiσ(i)anσ(n))=cσSnsgn(σ)(a1σ(1)aiσ(i)anσ(n))=det(A)det([a1  cai  an])=cdet(A) \def\b{\boldsymbol} \begin{gathered} \begin{aligned} \det(\lbrack\b{a}_1 ~\cdots ~c\b{a}_i ~\cdots ~\b{a}_n\rbrack^\top) &= \sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)( a_{1\sigma(1)}\cdots ca_{i\sigma(i)}\cdots a_{n\sigma(n)}) \cr &= c\sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)( a_{1\sigma(1)}\cdots a_{i\sigma(i)}\cdots a_{n\sigma(n)}) \cr &= \det(A) \end{aligned} \cr \cr \therefore \det(\lbrack\b{a}_1 ~\cdots ~c\b{a}_i ~\cdots ~\b{a}_n\rbrack^\top) = c\det(A) \end{gathered}

積の行列式

det(AB)=det(A)det(B) \det(AB) = \det(A)\det(B)


積の行列式の証明:

det(AB)=det[ia1ibi1ia1ibinianibi1ianibin]=det[(a11b11+a12b21++a1nbn1)ia1ibin(an1b11+an2b21++annbn1)ianibin]=j1det[a1j1bj11ia1ibi2ia1ibinanj1bj11ianibi2ianibin](D4)=j1jndet[a1j1bj11a1jnbjnnanj1bj11anjnbjnn](D4)=j1jn{bj11bjnndet[a1j1a1jnanj1anjn]}(D5) \begin{aligned} \det(AB) &= \det\begin{bmatrix} \sum_{i} a_{1i}b_{i1} & \cdots &\sum_{i} a_{1i}b_{in} \\ \vdots & \ddots & \vdots \\ \sum_{i} a_{ni}b_{i1} & \cdots &\sum_{i} a_{ni}b_{in} \\ \end{bmatrix} \\ &= \det\begin{bmatrix} (a_{11}b_{11}+a_{12}b_{21}+\cdots + a_{1n}b_{n1}) & \cdots & \sum_i a_{1i}b_{in} \\ \vdots & \ddots & \vdots \\ (a_{n1}b_{11}+a_{n2}b_{21}+\cdots + a_{nn}b_{n1}) & \cdots & \sum_i a_{ni}b_{in} \end{bmatrix} \\ &= \sum_{j_1}\det\begin{bmatrix} a_{1j_1}b_{j_11} & \sum_i a_{1i}b_{i2} & \cdots & \sum_i a_{1i}b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nj_1}b_{j_11} & \sum_i a_{ni}b_{i2} & \cdots & \sum_i a_{ni}b_{in} \end{bmatrix} \quad \because\text{(D4)} \\ &= \sum_{j_1}\cdots\sum_{j_n}\det\begin{bmatrix} a_{1j_1}b_{j_11} & \cdots & a_{1j_n}b_{j_nn} \\ \vdots & \ddots & \vdots \\ a_{nj_1}b_{j_11} & \cdots & a_{nj_n}b_{j_nn} \end{bmatrix} \quad \because\text{(D4)} \\ &= \sum_{j_1}\cdots\sum_{j_n}\left\lbrace b_{j_11}\cdots b_{j_nn}\det\begin{bmatrix} a_{1j_1} & \cdots & a_{1j_n} \\ \vdots & \ddots & \vdots \\ a_{nj_1} & \cdots & a_{nj_n} \end{bmatrix}\right\rbrace \quad \because\text{(D5)} \\ \end{aligned} 

ここで、jk=jlj_k = j_l が等しい場合を考える。このとき定理 (D3)\text{(D3)} より、

det[a1j1a1jka1jla1jnanj1anjkanjlanjn]=0(jk=jl) \det\begin{bmatrix} a_{1j_1} & \cdots & a_{1j_k} & \cdots & a_{1j_l} & \cdots & a_{1j_n} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{nj_1} & \cdots & a_{nj_k} & \cdots & a_{nj_l} & \cdots & a_{nj_n} \end{bmatrix} = 0 \quad (j_k=j_l)

となることから、j1,j2,,jnj_1,j_2,\ldots,j_n の間で重複がない組合せの集まりは、置換全ての集まりと同値である。 (12nj1j2jn)=σSn \begin{pmatrix} 1 & 2 & \cdots & n \cr j_1 & j_2 & \cdots & j_n \end{pmatrix} = \sigma \in S_n とすると、 det(AB)=σSn{ibσ(i)idet[a1σ(1)a1σ(1)anσ(1)anσ(n)]}=τSn{ibiτ(i)sgn(τ)det[a11a1nan1ann]}(D2)=det(A)τSnsgn(τ)ibiτ(i)=det(A)det(B)det(AB)=det(A)det(B) \begin{aligned} \det(AB) &= \sum_{\sigma\in S_n}\left\lbrace\prod_i b_{\sigma(i)i}\cdot\det\begin{bmatrix} a_{1\sigma(1)} & \cdots & a_{1\sigma(1)} \\ \vdots & \ddots & \vdots \\ a_{n\sigma(1)} & \cdots & a_{n\sigma(n)} \end{bmatrix}\right\rbrace \\ &= \sum_{\tau\in S_n}\left\lbrace \prod_i b_{i\tau(i)}\cdot\mathrm{sgn}(\tau)\det\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}\right\rbrace \quad \because\text{(D2)} \\ &= \det(A)\sum_{\tau\in S_n}\mathrm{sgn}(\tau)\prod_i b_{i\tau(i)} \\ &= \det(A)\det(B) \\ \\ \therefore \det(AB) &= \det(A)\det(B) \end{aligned}

逆行列の行列式

det(A1)=1det(A) \det(A^{-1}) = \frac{1}{\det(A)}


逆行列の行列式の証明:

AA1=A1A=Idet(AA1)=det(A1A)=Idet(A)det(A1)=det(I)積の行列式よりdet(A)det(A1)=1det(A1)=1det(A) \begin{aligned} AA^{-1} = A^{-1}A &= I \\ \det(AA^{-1}) = \det(A^{-1}A) &= I \\ \det(A)\det(A^{-1}) &= \det(I) \quad \because\text{積の行列式より} \\ \det(A)\det(A^{-1}) &= 1 \\ \\ \therefore \det(A^{-1}) &= \frac{1}{\det(A)} \end{aligned}

関連記事

Tags

#Ansible (3) #Bash (1) #Docker (1) #Git (2) #Hugo (2) #Molecule (1) #Python (1) #WSLtty (1) #アルゴリズム (4) #ビジネス用語 (1) #プログラミング (1) #位相空間論 (8) #初等数学 (20) #初等関数 (1) #実解析 (1) #幾何学 (3) #微分積分学 (18) #情報理論 (4) #抽象代数学 (14) #数理モデル (2) #数理論理学 (21) #機械学習 (3) #正規表現 (1) #測度論 (3) #特殊関数 (4) #確率論 (18) #組合せ論 (5) #統計学 (12) #線型代数学 (18) #複素解析学 (4) #解析学 (15) #論理学 (6) #順序集合論 (9)