極限とは
ある数列あるいは点列がある値に限りなく近づくとき、その値を極限 (英:limit) といい、その数列あるいは点列は収束する (英:converge) という。収束しない場合は、発散する (英:diverge) という。
数列の収束
数列 an の収束は ε-N 論法 (英:epsilon-N definition of limit) を用いて、次式のように定義される。次式を満たすとき数列 (an) は極限 L に収束するといい、(an) は収束列と呼ばれる。
∀ε>0,∃N∈N,∀n∈N (n>N⇒∣an−L∣<ε)⇕n→∞liman=LanL:数列 (an) の元:極限
関数の収束
関数 f の収束は ε-δ 論法 (英:epsilon-delta definition of limit) を用いて、次のように定義される。
x→climf(x)=L⇕∀ε>0,∃δ>0,∀x∈R (0<∣x−c∣<δ⇒∣f(x)−L∣<ε)
関連記事