条件付き確率
確率空間 (Ω,F,Pr) において、事象 B が生起したという条件の下で事象 A が生起する確率のことを条件付き確率 (英:conditional probability) という。
Pr(A∣B):=Pr(B)Pr(A∩B)(Pr(B)>0)
全確率の法則
全確率の法則 (英:low of total probability) とは、事象 A が共通部分を持たない n 個の事象の事象付き確率に細分されている場合に、事象 A の確率を求める定理のこと。
Pr(A)=i=1∑nPr(Bi)Pr(A∣Bi)(A⊆i=1⋃nBi, Bi∩Bj=∅ (i=j))
全確率の法則の証明:
i=1∑nPr(Bi)Pr(A∣Bi)Pr(A)=i=1∑nPr(Bi)Pr(Bi)Pr(A∩Bi)=i=1∑nPr(A∩Bi)=Pr(i=1⋃nA∩Bi)∵Bi∩Bj=∅=Pr(A∩i⋃nBi)=Pr(A)∵A⊆i=1⋃nBi=i=1∑nPr(Bi)Pr(A∣Bi)
条件付き独立
次式が成り立つとき、C を与えたもとで A,B は条件付き独立 (英:conditional independence) であるという。
Pr(A,B∣C)=Pr(A∣C)Pr(B∣C)
条件付き確率質量関数
結合累積分布関数 FX,Y において、離散型確率変数 Y が y であることを知ったときの確率質量関数 PX∣Y=y は次式となる。このとき PX∣Y=y を 条件付確率質量関数 (英:conditional probability mass function) という。
PX∣Y=y(x)=P(y)PX,Y(x,y)
また PX∣Y=y を与えられたときの、累積分布関数 FX∣Y=y は次式のように表される。
FX∣Y=y(x)=xi≤x∑PX∣Y=y(xi)=xi≤x∑PY(y)PX,Y(xi,y)
条件付き確率密度関数
結合累積分布関数 FX,Y において、連続型確率変数 Y が y であることを知ったときの確率密度関数 pX∣Y=y は次式となる。このとき pX∣Y=y を条件付確率密度関数 (英:conditional probability density function) という。
pX∣Y=y(x)=pY(y)pX,Y(x,y)
また pX∣Y=y を与えられたときの、累積分布関数 FX∣Y=y は次式のように表される。
FX∣Y=y(x)=∫−∞xpX∣Y=y(u) du=∫−∞xpY(v)pX,Y(u,v) du
条件付き期待値
条件付き結合確率分布において一方の確率変数の値が定まっているという条件の下、もう一方の確率変数による期待値を条件付き期待値 (英:conditional expectation) という。
E(X∣Y=y)=⎩⎪⎪⎨⎪⎪⎧x∑xPX∣Y=y(x)∫xpX∣Y=y(x) dxif discreteif continuous
条件付き分散
条件付き結合確率分布において一方の確率変数の値が定まっているという条件の下、もう一方の確率変数による分散を条件付き分散 (英:conditional variance) という。
V(X∣Y=y)=⎩⎪⎪⎨⎪⎪⎧x∑(x−E(X∣Y=y))2PX∣Y=y(x)∫(x−E(X∣Y=y))2pX∣Y=y(x) dxif discreteif continuous
関連記事
参考文献
平井 有三
森北出版
売り上げランキング: 4,471
稲井 寛
森北出版
売り上げランキング: 43,700