ベイズの定理とは
ベイズの定理 (英:Bayes' theorem) とは、事象 A と Bi の条件付き確率の関係を表した定理のこと。言い換えれば結果 A に対する原因の確率 Pr(Bi∣A) が得られる式のこと。
Pr(Bi∣A)=∑j=1nPr(Bj)Pr(A∣Bj)Pr(Bi)Pr(A∣Bi)(Pr(A)>0)
A が生起したことを基準に、Pr(Bi) を事前確率 (英:prior probability)、Pr(Bi∣A) を事後確率 (英:posterior probability) という。事前確率にはしばしば主観確率が用いられる。
ベイズの定理の導出:
Pr(Bi∣A)∴Pr(Bi∣A)=Pr(A)Pr(Bi∩A)=Pr(Bi)Pr(A)Pr(Bi)Pr(Bi∩A)=Pr(A)Pr(Bi)Pr(A∣Bi)=∑j=1nPr(Bj)Pr(A∣Bj)Pr(Bi)Pr(A∣Bi)=∑j=1nPr(Bj)Pr(A∣Bj)Pr(Bi)Pr(A∣Bi)
理由不十分の原則
理由不十分の原則 (英:principle of insufficient reason) とは統計学上の原理で、個々の事象が同様に確からしく起こるということに対して、反対の十分な理由がない限りはその仮説を信じるのが妥当であるという原則。
主観確率
ベイズの定理を用いる場面では、事前確率の生起が不確実なときにしばしば主観を混ぜて評価した確率を利用することがある。このような確率を主観確率 (英:subjective probability) という。
関連記事
参考文献
稲井 寛
森北出版
売り上げランキング: 43,700